organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-n-Butyl-9,9'-bi[9H-fluorene]

Shu-Qiang Yu, Bin-Bin Hu and Ping Lu*

Department of Chemistry, Zhejiang University, Yuquan Campus, Hangzhou, 310027, People's Republic of China Correspondence e-mail: pinglu@zju.edu.cn

Received 16 December 2007; accepted 15 January 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.122; data-to-parameter ratio = 18.2.

In the title compound, $C_{30}H_{26}$, the dihedral angle between the two fluorene ring systems is $61.75 (4)^{\circ}$.

Related literature

For general background, see: Muller et al. (2003); Murahashi & Moritani (1967).

Experimental

Crystal data

$C_{30}H_{26}$	$V = 4372.7 (15) \text{ A}^3$
$M_r = 386.51$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 27.164 (5) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 8.6369 (17) Å	T = 298 (2) K
c = 19.232 (4) Å	$0.46 \times 0.38 \times 0.35 \text{ mm}$
$\beta = 104.28 \ (3)^{\circ}$	

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: none 20365 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 273 parameters $wR(F^2) = 0.122$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$ 4970 reflections

4970 independent reflections

 $R_{\rm int} = 0.031$

2859 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008).

The authors thank the National Natural Science Foundation of China (20674070) and the Natural Science Foundation of Zhejiang Province (R404109).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2394).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Muller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H. & Meerholz, K. (2003). Nature (London), 421, 829-833.

Murahashi, S. & Moritani, I. (1967). Tetrahedron, 23, 3631-3643.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

Acta Cryst. (2008). E64, o490 [doi:10.1107/S1600536808001517]

9-n-Butyl-9,9'-bi[9H-fluorene]

S.-Q. Yu, B.-B. Hu and P. Lu

Comment

Fluorene derivatives, including polyfluorenes and oligofluorenes, remain a subject of intense investigation in recent years because they are very promising candidates for blue light-emitting materials in organic light-emitting devices (Muller *et al.*, 2003). The title compound, 9-*n*-butyl-9,9'-bi(9*H*-fluorene)(hereinafter abbreviated to bbf), is one of bifluorene derivatives (Murahashi & Moritani, 1967).

The asymmetric unit of the title compound contains only one bbf molecule (Fig. 1). Two fluorene rings are linked together through their 9-position carbon atoms (C1 and C14). The dihedral angle between the two fluorene rings is 61.75 (4)°. The centroid to centroid distance between stacked fluorene rings is ca 5.92 Å, which is very long and prevents π - π stacking (Fig. 2). All bond lengths and angles are normal.

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used as received, unless stated otherwise. n-Butylithium (8 ml, 2.5 *M*, 20 mmol) was added to fluorene (1.66 g, 10 mmol) in 40 ml dry tetrahydrofuran under nitrogen at -78 °C. Subsequently, BF₃Et₂O (0.21 g, 2 mmol) was added. Kept it for 1 h, and warmed it to room temperature and stirred it overnight. After reaction completion, solvent was evaporated under reduced pressure. The crude products were purified by column chromatography (silica gel) using n-hexane/dichloromethane as eluent. The title compound was obtained as white solid in 30% yield. Colorless single crystals were grown from slow evaporation of a saturated CH₂Cl₂ solution of the compound.

Refinement

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.97 (methylene) or 0.96 Å (methyl), $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl or $U_{iso}(H) = 1.2U_{eq}(C)$ for others.

Figures

Fig. 1. The molecular structure showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2. Partial packing view, H atoms are omitted for clarity.

9-n-Butyl-9,9'-bi[9H-fluorene]

Crystal data	
$C_{30}H_{26}$	$F_{000} = 1648$
$M_r = 386.51$	$D_{\rm x} = 1.174 { m Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 12421 reflections
a = 27.164 (5) Å	$\theta = 3.0-27.4^{\circ}$
<i>b</i> = 8.6369 (17) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 19.232 (4) Å	T = 298 (2) K
$\beta = 104.28 \ (3)^{\circ}$	Chunk, colorless
$V = 4372.7 (15) \text{ Å}^3$	$0.46 \times 0.38 \times 0.35 \text{ mm}$
Z = 8	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	2859 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.031$
Monochromator: graphite	$\theta_{\text{max}} = 27.4^{\circ}$
T = 298(2) K	$\theta_{\min} = 3.1^{\circ}$
φ and ω scans	$h = -35 \rightarrow 35$
Absorption correction: none	$k = -11 \rightarrow 10$

20365 measured reflections 4970 independent reflections $l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0595P)^2 + 0.3188P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.122$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
4970 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
273 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0038 (4)

Secondary atom site location: difference Fourier map

Special details

Experimental. ¹H NMR (500 MHz, δ in p.p.m., CDCl₃): 0.68–0.74 (m, 5H), 0.17–1.22 (m, 2H), 2.55–2.58 (m, 2H), 4.58 (s, 1H), 6.76 (d, 2H, *J* = 7.00 Hz), 6.86 (d, 2H, *J* = 7.00 Hz), 6.97 (t, 2H, *J* = 7.50 Hz), 7.08 (t, 2H, *J* = 7.50 Hz), 7.17–7.23 (m, 4H), 7.49 (d, 2H, *J* = 7.50 Hz); ¹³C NMR (125 MHz, δ in p.p.m., CDCl₃): 14.15, 23.35, 26.45, 38.86, 55.48, 57.75, 119.39,119.62, 123.40, 125.84, 126.00, 126.90, 127.35, 141.59, 142.19, 144.37, 148.57; MS (EI): calcd for C₃₀H₂₆, 386.2; found, 386 (*M*⁺), 326, 313, 300, 221 (100), 179, 165, 152.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	Uiso*/Ueq
C1	0.11948 (5)	0.49033 (14)	-0.00529 (6)	0.0446 (3)
C2	0.09626 (5)	0.61937 (15)	-0.05656(7)	0.0482 (3)
C3	0.05151 (6)	0.61827 (19)	-0.11011 (7)	0.0622 (4)
H3	0.0322	0.5285	-0.1203	0.075*
C4	0.03611 (7)	0.7533 (2)	-0.14825 (8)	0.0765 (5)
H4	0.0058	0.7547	-0.1836	0.092*
C5	0.06533 (8)	0.8858 (2)	-0.13425 (9)	0.0788 (5)
Н5	0.0546	0.9751	-0.1607	0.095*

C6	0.11021 (7)	0.88774 (17)	-0.08167 (9)	0.0669 (4)
H6	0.1299	0.9770	-0.0728	0.080*
C7	0.12544 (5)	0.75404 (15)	-0.04213 (7)	0.0501 (3)
C8	0.16888 (5)	0.72391 (15)	0.01911 (7)	0.0492 (3)
С9	0.20847 (6)	0.81905 (18)	0.05433 (9)	0.0648 (4)
Н9	0.2109	0.9204	0.0392	0.078*
C10	0.24415 (6)	0.7601 (2)	0.11223 (9)	0.0730 (5)
H10	0.2707	0.8227	0.1365	0.088*
C11	0.24097 (6)	0.6098 (2)	0.13449 (8)	0.0679 (4)
H11	0.2653	0.5725	0.1737	0.082*
C12	0.20198 (5)	0.51323 (17)	0.09921 (7)	0.0562 (4)
H12	0.2003	0.4113	0.1141	0.067*
C13	0.16563 (5)	0.57100 (14)	0.04155 (6)	0.0453 (3)
C14	0.08081 (5)	0.43871 (14)	0.03910 (7)	0.0481 (3)
H14	0.0498	0.4014	0.0055	0.058*
C15	0.06633 (5)	0.56906 (16)	0.08363 (7)	0.0518 (3)
C16	0.04276 (5)	0.71006 (18)	0.06246 (9)	0.0617 (4)
H16	0.0342	0.7384	0.0143	0.074*
C17	0.03222 (6)	0.8079 (2)	0.11398 (10)	0.0757 (5)
H17	0.0167	0.9028	0.1002	0.091*
C18	0.04449 (7)	0.7664 (2)	0.18550 (10)	0.0828 (5)
H18	0.0371	0.8337	0.2193	0.099*
C19	0.06752 (7)	0.6270 (2)	0.20742 (9)	0.0744 (5)
H19	0.0755	0.5993	0.2556	0.089*
C20	0.07864 (5)	0.52777 (18)	0.15625 (7)	0.0566 (4)
C21	0.09993 (5)	0.37098 (17)	0.16385 (7)	0.0553 (4)
C22	0.11628 (6)	0.2786 (2)	0.22436 (8)	0.0694 (4)
H22	0.1170	0.3176	0.2697	0.083*
C23	0.13134 (7)	0.1289 (2)	0.21644 (10)	0.0774 (5)
H23	0.1429	0.0670	0.2567	0.093*
C24	0.12937 (7)	0.07014 (19)	0.14925 (10)	0.0768 (5)
H24	0.1392	-0.0317	0.1446	0.092*
C25	0.11283 (6)	0.16108 (17)	0.08828 (8)	0.0661 (4)
H25	0.1109	0.1196	0.0430	0.079*
C26	0.09925 (5)	0.31399 (16)	0.09538 (7)	0.0519 (3)
C27	0.13491 (5)	0.35210 (15)	-0.04660 (7)	0.0525 (3)
H27A	0.1531	0.2773	-0.0121	0.063*
H27B	0.1043	0.3022	-0.0742	0.063*
C28	0.16785 (6)	0.39514 (15)	-0.09723 (7)	0.0558 (4)
H28A	0.1501	0.4721	-0.1310	0.067*
H28B	0.1990	0.4421	-0.0695	0.067*
C29	0.18128 (7)	0.26016 (17)	-0.13865 (8)	0.0685 (4)
H29A	0.1503	0.2082	-0.1635	0.082*
H29B	0.2014	0.1869	-0.1052	0.082*
C30	0.21068 (8)	0.3067 (2)	-0.19310 (9)	0.0881 (6)
H30A	0.1908	0.3783	-0.2269	0.132*
H30B	0.2177	0.2164	-0.2181	0.132*
H30C	0.2420	0.3550	-0.1688	0.132*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0415 (7)	0.0482 (7)	0.0460 (7)	-0.0060 (6)	0.0142 (5)	-0.0020 (6)
C2	0.0433 (7)	0.0593 (8)	0.0459 (7)	-0.0001 (6)	0.0186 (6)	0.0001 (6)
C3	0.0508 (9)	0.0868 (11)	0.0499 (8)	0.0004 (8)	0.0139 (7)	0.0039 (8)
C4	0.0623 (11)	0.1144 (15)	0.0535 (9)	0.0212 (10)	0.0157 (8)	0.0162 (10)
C5	0.0905 (14)	0.0866 (12)	0.0679 (10)	0.0336 (11)	0.0358 (10)	0.0248 (10)
C6	0.0836 (12)	0.0559 (8)	0.0704 (10)	0.0098 (8)	0.0365 (9)	0.0072 (8)
C7	0.0529 (8)	0.0493 (8)	0.0549 (8)	0.0031 (6)	0.0260 (6)	0.0012 (6)
C8	0.0473 (8)	0.0491 (7)	0.0567 (8)	-0.0060 (6)	0.0232 (6)	-0.0071 (6)
С9	0.0626 (10)	0.0559 (8)	0.0801 (10)	-0.0169 (7)	0.0258 (8)	-0.0134 (8)
C10	0.0554 (10)	0.0829 (12)	0.0798 (11)	-0.0220 (8)	0.0146 (9)	-0.0215 (9)
C11	0.0441 (9)	0.0922 (12)	0.0640 (9)	-0.0055 (8)	0.0068 (7)	-0.0079 (9)
C12	0.0448 (8)	0.0635 (8)	0.0600 (8)	-0.0021 (7)	0.0123 (6)	0.0001 (7)
C13	0.0383 (7)	0.0513 (7)	0.0494 (7)	-0.0032 (6)	0.0169 (6)	-0.0062 (6)
C14	0.0437 (7)	0.0556 (7)	0.0470 (7)	-0.0109 (6)	0.0148 (6)	-0.0044 (6)
C15	0.0368 (7)	0.0645 (8)	0.0575 (8)	-0.0096 (6)	0.0182 (6)	-0.0080 (7)
C16	0.0473 (8)	0.0704 (9)	0.0729 (9)	-0.0019 (7)	0.0254 (7)	-0.0040 (8)
C17	0.0625 (11)	0.0751 (11)	0.0997 (13)	0.0026 (8)	0.0394 (9)	-0.0123 (10)
C18	0.0761 (12)	0.0938 (13)	0.0885 (13)	-0.0032 (10)	0.0390 (10)	-0.0320 (11)
C19	0.0682 (11)	0.0985 (13)	0.0610 (9)	-0.0059 (10)	0.0248 (8)	-0.0185 (9)
C20	0.0422 (8)	0.0766 (10)	0.0537 (8)	-0.0100 (7)	0.0172 (6)	-0.0111 (7)
C21	0.0441 (8)	0.0723 (9)	0.0510 (8)	-0.0129 (7)	0.0146 (6)	-0.0014 (7)
C22	0.0606 (10)	0.0949 (12)	0.0529 (8)	-0.0117 (9)	0.0147 (7)	0.0030 (9)
C23	0.0701 (11)	0.0909 (12)	0.0723 (11)	-0.0040 (9)	0.0199 (9)	0.0229 (10)
C24	0.0811 (12)	0.0638 (10)	0.0934 (13)	-0.0049 (9)	0.0365 (10)	0.0171 (10)
C25	0.0790 (11)	0.0602 (9)	0.0667 (9)	-0.0149 (8)	0.0325 (8)	0.0007 (8)
C26	0.0475 (8)	0.0594 (8)	0.0524 (8)	-0.0146 (6)	0.0191 (6)	-0.0021 (7)
C27	0.0569 (9)	0.0514 (7)	0.0531 (7)	-0.0082 (6)	0.0208 (6)	-0.0051 (6)
C28	0.0611 (9)	0.0551 (8)	0.0562 (8)	-0.0035 (7)	0.0242 (7)	-0.0029 (7)
C29	0.0848 (12)	0.0617 (9)	0.0693 (10)	0.0068 (8)	0.0389 (9)	-0.0003 (8)
C30	0.1143 (16)	0.0845 (12)	0.0849 (12)	0.0179 (11)	0.0617 (11)	0.0060 (10)

Geometric parameters (Å, °)

C1—C2	1.5183 (18)	C16—H16	0.9300
C1—C13	1.5203 (17)	C17—C18	1.380 (2)
C1—C27	1.5481 (18)	С17—Н17	0.9300
C1—C14	1.5728 (18)	C18—C19	1.374 (2)
C2—C3	1.386 (2)	C18—H18	0.9300
C2—C7	1.3963 (18)	C19—C20	1.393 (2)
C3—C4	1.386 (2)	С19—Н19	0.9300
С3—Н3	0.9300	C20—C21	1.466 (2)
C4—C5	1.381 (2)	C21—C22	1.390 (2)
C4—H4	0.9300	C21—C26	1.4018 (18)
C5—C6	1.379 (3)	C22—C23	1.376 (2)
С5—Н5	0.9300	C22—H22	0.9300

C6—C7	1.3884 (19)	C23—C24	1.377 (2)
С6—Н6	0.9300	С23—Н23	0.9300
С7—С8	1.470 (2)	C24—C25	1.391 (2)
C8—C9	1.3897 (19)	C24—H24	0.9300
C8—C13	1.3989 (18)	C25—C26	1.387 (2)
C9—C10	1.381 (2)	C25—H25	0.9300
С9—Н9	0.9300	C27—C28	1.5222 (19)
C10-C11	1.376 (2)	C27—H27A	0.9700
C10—H10	0.9300	С27—Н27В	0.9700
C11—C12	1.387 (2)	C28—C29	1.5067 (19)
C11—H11	0.9300	C28—H28A	0.9700
C12—C13	1.3833 (19)	C28—H28B	0.9700
C12—H12	0.9300	C29—C30	1.520 (2)
C14—C26	1.5217 (19)	С29—Н29А	0.9700
C14—C15	1.5237 (18)	С29—Н29В	0.9700
C14—H14	0.9800	С30—Н30А	0.9600
C15—C16	1.389 (2)	С30—Н30В	0.9600
C15—C20	1.3997 (19)	С30—Н30С	0.9600
C16—C17	1.385 (2)		
C2—C1—C13	101.43 (10)	C18—C17—C16	120.85 (17)
C2—C1—C27	110.77 (10)	C18—C17—H17	119.6
C13—C1—C27	111.68 (11)	С16—С17—Н17	119.6
C2-C1-C14	109.53 (10)	C19—C18—C17	120.85 (16)
C13—C1—C14	111.83 (10)	C19—C18—H18	119.6
C27—C1—C14	111.19 (10)	C17—C18—H18	119.6
C3—C2—C7	120.28 (13)	C18—C19—C20	118.94 (16)
C3—C2—C1	128.70 (13)	С18—С19—Н19	120.5
C7—C2—C1	110.96 (11)	С20—С19—Н19	120.5
C2—C3—C4	118.83 (15)	C19—C20—C15	120.53 (15)
С2—С3—Н3	120.6	C19—C20—C21	130.31 (14)
С4—С3—Н3	120.6	C15—C20—C21	109.04 (12)
C5—C4—C3	120.68 (16)	C22—C21—C26	120.82 (15)
C5—C4—H4	119.7	C22—C21—C20	130.58 (14)
C3—C4—H4	119.7	C26—C21—C20	108.50 (12)
C6—C5—C4	120.98 (15)	C23—C22—C21	119.27 (15)
С6—С5—Н5	119.5	C23—C22—H22	120.4
C4—C5—H5	119.5	C21—C22—H22	120.4
C5—C6—C7	118.81 (16)	C22—C23—C24	120.43 (16)
С5—С6—Н6	120.6	С22—С23—Н23	119.8
С7—С6—Н6	120.6	C24—C23—H23	119.8
C6—C7—C2	120.40 (14)	C23—C24—C25	120.85 (17)
C6—C7—C8	131.13 (13)	C23—C24—H24	119.6
C2—C7—C8	108.42 (11)	C25—C24—H24	119.6
C9—C8—C13	120.53 (13)	C26—C25—C24	119.55 (15)
C9—C8—C7	131.11 (13)	C26—C25—H25	120.2
C13—C8—C7	108.36 (11)	C24—C25—H25	120.2
C10—C9—C8	118.67 (14)	C25—C26—C21	118.99 (13)
С10—С9—Н9	120.7	C25—C26—C14	130.76 (12)
С8—С9—Н9	120.7	C21—C26—C14	110.21 (12)

C11—C10—C9	120.90 (14)	C28—C27—C1	114.59 (11)
C11—C10—H10	119.5	С28—С27—Н27А	108.6
C9—C10—H10	119.5	C1—C27—H27A	108.6
C10-C11-C12	120.93 (15)	С28—С27—Н27В	108.6
C10-C11-H11	119.5	C1—C27—H27B	108.6
C12—C11—H11	119.5	H27A—C27—H27B	107.6
C13—C12—C11	118.90 (14)	C29—C28—C27	113.98 (11)
C13—C12—H12	120.6	C29—C28—H28A	108.8
C11—C12—H12	120.6	C27—C28—H28A	108.8
C12—C13—C8	120.06 (12)	C29—C28—H28B	108.8
C12—C13—C1	129.12 (12)	C27—C28—H28B	108.8
C8—C13—C1	110.82 (11)	H28A—C28—H28B	107.7
C26—C14—C15	102.04 (10)	C28—C29—C30	113.36(13)
C26—C14—C1	116.10 (11)	С28—С29—Н29А	108.9
C15—C14—C1	113.28 (10)	С30—С29—Н29А	108.9
C26—C14—H14	108.3	С28—С29—Н29В	108.9
C15—C14—H14	108.3	C30—C29—H29B	108.9
C1-C14-H14	108.3	H29A—C29—H29B	107.7
C16-C15-C20	119 68 (13)	C29—C30—H30A	109.5
C16-C15-C14	130 33 (13)	C29—C30—H30B	109.5
C_{20} C_{15} C_{14}	109.96 (12)	H30A—C30—H30B	109.5
C_{17} C_{16} C_{15}	119 15 (15)	C29-C30-H30C	109.5
C_{17} C_{16} H_{16}	120.4	$H_{30A} - C_{30} - H_{30C}$	109.5
C_{15} C_{16} H_{16}	120.1	H30B-C30-H30C	109.5
	17(42 (12)		51 (A (1A)
C13 - C1 - C2 - C3	-1/6.43(13)	C13 - C1 - C14 - C15	51.64 (14)
$C_2/-C_1-C_2-C_3$	64.89 (18) 59.12 (17)	$C_2/-C_1-C_14-C_15$	177.25 (11)
C14 - C1 - C2 - C3	-58.12(17)	$C_{26} - C_{14} - C_{15} - C_{16}$	-1/3.6/(13)
C13-C1-C2-C7	1.02 (13)	CI = CI4 = CI5 = CI6	60.//(18)
$C_2/-C_1-C_2-C_7$	-117.65 (12)	$C_{26} - C_{14} - C_{15} - C_{20}$	4.01 (14)
C14-C1-C2-C7	119.34 (11)	C1 - C14 - C15 - C20	-121.55 (12)
C7—C2—C3—C4	-0.8 (2)	C20-C15-C16-C17	0.5 (2)
C1 - C2 - C3 - C4	176.49 (13)	C14—C15—C16—C17	177.98 (14)
C2—C3—C4—C5	1.4 (2)	C15-C16-C17-C18	-0.5 (2)
C3—C4—C5—C6	-0.6 (3)	C16—C17—C18—C19	0.0 (3)
C4—C5—C6—C7	-0.7 (2)	C17—C18—C19—C20	0.4 (3)
C5—C6—C7—C2	1.3 (2)	C18—C19—C20—C15	-0.3 (2)
C5—C6—C7—C8	-175.78 (14)	C18—C19—C20—C21	-175.94 (15)
C3—C2—C7—C6	-0.6 (2)	C16—C15—C20—C19	-0.1 (2)
C1—C2—C7—C6	-178.28 (12)	C14—C15—C20—C19	-178.06 (13)
C3—C2—C7—C8	177.11 (12)	C16—C15—C20—C21	176.36 (12)
C1—C2—C7—C8	-0.59 (15)	C14—C15—C20—C21	-1.60 (15)
C6—C7—C8—C9	-2.2 (3)	C19—C20—C21—C22	-1.9 (3)
C2—C7—C8—C9	-179.55 (14)	C15—C20—C21—C22	-177.95 (15)
C6—C7—C8—C13	177.20 (14)	C19—C20—C21—C26	174.22 (15)
C2—C7—C8—C13	-0.16 (15)	C15—C20—C21—C26	-1.79 (15)
C13—C8—C9—C10	-0.6 (2)	C26—C21—C22—C23	-0.8 (2)
C7—C8—C9—C10	178.69 (14)	C20—C21—C22—C23	174.97 (15)
C8—C9—C10—C11	0.5 (2)	C21—C22—C23—C24	-1.2 (3)
C9—C10—C11—C12	0.3 (3)	C22—C23—C24—C25	0.9 (3)

C10-C11-C12-C13	-0.9 (2)	C23—C24—C25—C26	1.5 (3)
C11—C12—C13—C8	0.8 (2)	C24—C25—C26—C21	-3.4 (2)
C11—C12—C13—C1	-179.59 (13)	C24—C25—C26—C14	179.11 (14)
C9—C8—C13—C12	0.0 (2)	C22—C21—C26—C25	3.1 (2)
C7—C8—C13—C12	-179.46 (12)	C20-C21-C26-C25	-173.51 (13)
C9—C8—C13—C1	-179.69 (12)	C22-C21-C26-C14	-178.93 (13)
C7—C8—C13—C1	0.84 (14)	C20-C21-C26-C14	4.46 (15)
C2-C1-C13-C12	179.22 (13)	C15-C14-C26-C25	172.52 (14)
C27—C1—C13—C12	-62.77 (17)	C1-C14-C26-C25	-63.80 (19)
C14-C1-C13-C12	62.57 (17)	C15—C14—C26—C21	-5.13 (14)
C2—C1—C13—C8	-1.12 (13)	C1-C14-C26-C21	118.54 (12)
C27—C1—C13—C8	116.89 (12)	C2-C1-C27-C28	51.73 (15)
C14—C1—C13—C8	-117.77 (12)	C13—C1—C27—C28	-60.53 (15)
C2-C1-C14-C26	-177.61 (10)	C14—C1—C27—C28	173.78 (11)
C13-C1-C14-C26	-65.98 (14)	C1-C27-C28-C29	-178.29 (13)
C27—C1—C14—C26	59.63 (14)	C27—C28—C29—C30	175.53 (14)
C2-C1-C14-C15	-59.99 (13)		

Fig. 1

Fig. 2

